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Abstract. We present a method for the direct measurement of the Wigner-function matrix for complex
vibronic states of a trapped atom, that is suited to analyse the entanglement between two motional degrees
of freedom and the internal electronic dynamics. It is a generalisation of the method for the determination
of vibronic quantum states [S. Wallentowitz, R.L. de Matos Filho, W. Vogel, Phys. Rev. A 56, 1205 (1997)]
in conjunction with the scheme for the direct observation of the Wigner function of a single motional degree
of freedom [L.G. Lutterbach, L. Davidovich, Phys. Rev. Lett. 78, 2547 (1997)]. The major advantage of
the present method is that it reduces the experimental efforts substantially. On the other hand, it is
demonstrated that the nonlinear vibronic coupling necessary for this method turns out to be its main
limitation.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm
effect, Bell inequalities, Berry’s phase) – 42.50.Vk Mechanical effects of light on atoms, molecules, electrons,
and ions – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

Methods for reconstructing quantum states of light and
matter nowadays are a subject of large interest [1]. The
first experiments concerning quantum-state reconstruc-
tion have been performed with light pulses [2] and some-
what later the quantum state of a molecular vibration has
been determined [3]. These approaches did apply methods
of tomographic reconstruction [4], that require a (Radon)
three-fold integral transform to reconstruct the Wigner
function from measured data. Later on, the methods of
quantum-state tomography have been further refined. The
measured quadrature distribution could be directly re-
lated by a two-fold Fourier transform to the density matrix
in a quadrature representation [5]. Alternatively, methods
for the reconstruction of the density matrix in the number
representation have been proposed [6,7] and experimen-
tally realized [8].

Tomographic and other methods have also been pro-
posed for reconstructing the motional quantum state of a
trapped atom [9,10]. Quantum-state reconstruction meth-
ods for trapped atoms are of special importance in view
of their outstanding feasibilities for preparing nonclassi-
cal quantum states of the atomic center-of-mass motion.
In recent experiments, coherent states, number states,
squeezed states, and Schrödinger-cat states have been pre-
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pared in the motion of a single trapped ion [11,12]. More-
over, there exist interesting possibilities to produce dark
states of motion that are highly stable, including squeezed
states, even and odd coherent states, nonlinear coherent
states, pair coherent and pair cat states [13–15].

A significant reduction of the mathematical efforts
to relate the quantum state of a bosonic mode to the
measured data can be achieved by measuring its num-
ber statistics after introducing well-defined coherent dis-
placements [16]. The quantum state is then obtained in
the form of a quasiprobability distribution, as for exam-
ple the Wigner function. Here the quasiprobabilities can
be obtained as weighted sums of the measured number
statistics, at phase-space points determined by the coher-
ent displacements. Since the quasiprobabilities, which are
locally determined at each phase-space point, are inde-
pendent of those at other phase-space points, the method
is not a tomographic but a local reconstruction method.
Such a local method has been successfully applied in the
experiment for the reconstruction of the motional quan-
tum state of a trapped atom [17]. However, with a single
trapped atom, quantum states having entangled external
and internal degrees of freedom such as the Schrödinger-
cat states, have been experimentally realised [12]. More-
over, there exist proposals to generate correlated states of
two motional degrees of freedom [15] and also arbitrary en-
tangled quantum states [18]. The full diagnostics of such
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complex, entangled quantum states of a single trapped
atom requires further extensions and improvements of the
available methods.

For this purpose it is useful to consider the specific
interaction dynamics of a trapped atom in some detail,
including the internal and external atomic degrees of
freedom and the driving lasers. In the resolved-sideband
regime, this dynamics can be described by a nonlinear
Jaynes-Cummings model [19]. In the particular case that
the system is driven on resonance with a weak electronic
transition, the interaction Hamiltonian does not alter the
motional number statistics, while, due to its nonlinear
character, it efficiently discriminates the different mo-
tional number states by phase shifts. Consequently, such a
laser-atom interaction can be used for a quantum nonde-
molition measurement of the energy of the center-of-mass
motion [20]. Moreover, this interaction can be used to re-
construct the full information on entangled vibronic quan-
tum states from measured data [21], where the entangled
vibronic quantum state describes the state of a motional
and an electronic degree of freedom.

In a certain range of parameters [22], this laser-atom
interaction has also been shown to allow one a direct map-
ping of the Wigner function of a single motional degree
of freedom onto the electronic-state inversion [23]. Such
a method directly yields the Wigner function as a mea-
surable quantity and therefore would significantly reduce
the set of required experimental data. Thus, it would be
of vital interest to apply such a direct method for more
complex, entangled quantum states, such as two-mode vi-
bronic quantum states, for which the set of measurement
data, required by conventional methods, would be very
large.

In the present paper we show that the direct measure-
ment of the Wigner function is practicable for quantum
states of a trapped atom which is described by a two-level
atom that undergoes a two-dimensional motion. For this
purpose it is advantageous to extend the concept of the
Wigner-function matrix used in reference [21] to include
two motional modes. The direct measurement method is
compared with a more involved QND-type reconstruction
method. It will be shown that the limitations of both
methods are strongly determined by the laser-induced,
nonlinear vibronic coupling, with the QND-type method
being of more general application.

The paper is organised as follows. First, in Section 2
the characterisation of the two-mode vibronic quantum
states by an appropriate Wigner-function matrix is dis-
cussed. Then, in Section 3 we show that these quanti-
ties can be obtained from joint probabilities that are ac-
cessible in experiments by probing the electronic ground-
state population. Here we study first the well established
Raman-laser interaction and then two different measure-
ment methods, namely a QND-based method and a direct
measurement method. The limitations and the range of
applicability of the proposed methods are considered in
Section 4. Finally, a summary and some concluding re-
marks are given in Section 5.

2 Characterisation of the two-mode vibronic
quantum state

In quantum theory the statistical properties of a quan-
tum system with several degrees of freedom are usually
characterised by the density operator %̂. For a single atom
bound in an electromagnetic trap the degrees of freedom
are given by the set of three coordinates xi (i=1, 2, 3) de-
scribing the center-of-mass motion in the direction of the
principal axes of the trap and by the electronic degree of
freedom.

2.1 Description for one motional degree of freedom

In many practical situations one is only interested in the
dynamics of a single degree of freedom. Here it is of spe-
cial interest to consider the motional degree of freedom of
the atom describing its center-of-mass vibration along one
principal axis of the trap, say x1. This type of restricted
information on the quantum state of the trapped atom
is described by the reduced density operator ρ̂ which is
obtained by tracing over the remaining motional (x2, x3)
and the electronic (el) degree of freedom,

ρ̂ = Trx2,x3Trel %̂. (1)

The calculation of expectation values of observables can
be formulated similar to the classical probability theory by
introducing quasiprobability distributions in the motional
phase space, allowing one to use a phase-space description
of the quantum state of the system. One prominent rep-
resentative of these quasiprobability distributions is the
Wigner function [24]. For a harmonic trap potential the
Wigner function describing a single degree of freedom (in
our case x1) is given as [25]

W (α) = 〈 δ̂(α−â) 〉 = Tr
[
ρ̂ δ̂(α−â)

]
, (2)

where the operator-valued delta function δ̂(α− â) is the
Fourier transform of the coherent displacement operator,

D̂(α) = exp(αâ†−α∗â), (3)

and can be given in the form [25]

δ̂(α−â) =
1

π

∫
d2ξ D̂(ξ) eα ξ

∗−α∗ξ

=
2

π
D̂(α) (−1)â

†âD̂†(α). (4)

In equations (3) and (4) â and â† are the bosonic anni-
hilation and creation operators of vibrational quanta in
the trap potential, respectively. The density operator can
be obtained from the Wigner function by inverting equa-
tion (2),

ρ̂ =

∫
d2αW (α) δ̂(α−â), (5)
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so that the information on the quantum state contained
in W (α) is equivalent to the information contained in
the density operator ρ̂. In order to reconstruct the re-
duced information on the quantum state describing the
one-dimensional motion of a trapped atom, as given by
the reduced density operator (1), several proposals have
been made [9,10,23] and successful experiments have been
performed [17].

2.2 Extension for two-mode vibronic quantum states

The Wigner function as given above cannot be used for
dealing with systems having more than one degree of free-
dom. Thus, in order to have a complete description of
a system with several degrees of freedom, one needs a
more generalised definition for the quasiprobability dis-
tribution. A generalisation to include both the motional
and electronic degree of freedom has recently been used in
the context of a measurement scheme for reconstructing
the complete information on the vibronic quantum state
for a trapped atom [21].

For characterising more complex two-mode vibronic
quantum states of a trapped atom we further extend the
definition of the Wigner function to include two motional
degrees of freedom x1 and x2 and the electronic degree of
freedom by defining the two-mode Wigner-function matrix

Wij(α1, α2) := 〈 Âji δ̂(α1−â1) δ̂(α2−â2) 〉

= Tr
[
%̂ Âji δ̂(α1−â1) δ̂(α2−â2)

]
. (6)

Here %̂ is the jointed density operator describing the in-
ternal electronic and the two external motional degrees of
freedom of the atom. The operators âi and â†i (i = 1, 2)
are the annihilation and creation operators of the center-
of-mass motion along the principal axes xi, respectively,
and αi are the complex-valued phase-space amplitudes of
the two-dimensional motion. The electronic flip operator
Âji = |j〉〈i| describes the transition from the electronic
state |i〉 to the state |j〉.

Based on equations (4) and (6), by tracing over the
electronic degree of freedom and using the cyclic property
of the trace one obtains

Wij(α1, α2) =

4

π2
Tr
[
(−1)n̂1+n̂2D̂†1(α1)D̂†2(α2)%̂ijD̂1(α1)D̂2(α2)

]
, (7)

where %̂ij =〈i|%̂|j〉 is an operator acting on the (two-mode)

Hilbert space of the motional subsystem. Here D̂i and

n̂i = â†i âi (i = 1, 2) are the displacement operators and
the numbers of vibrational quanta in the xi mode, respec-
tively. Performing the trace over the motional degrees of
freedom, x1 and x2, with the help of the number states
n̂i|n〉i=n|n〉i (i=1, 2), we arrive at

Wij(α) =
4

π2

∞∑
m,n=0

(−1)m+n 〈m,n| %̂ij(−α) |m,n〉, (8)

where |m,n〉 = |m〉1|n〉2 is a two-mode number state
with m and n vibrational quanta in the modes x1 and
x2, respectively, and total number of vibrational quanta
N =m+n [26]. Equation (8) relates the Wigner-function
matrix at the phase-space point α=(α1, α2) to the coher-
ently displaced density operator

%̂ij(−α) = D̂†1(α1) D̂†2(α2) %̂ij D̂1(α1) D̂2(α2). (9)

Note, that by inverting equation (6), the density oper-
ator of the whole vibronic quantum state can be obtained
from the Wigner-function matrix as

%̂ =
∑
ij

∫ ∫
d2α1 d2α2Wij(α) Âij δ̂(α1−â1) δ̂(α2−â2),

(10)

showing that the Wigner-function matrix Wij(α) contains
the complete information on the two-mode vibronic quan-
tum state of the trapped atom.

2.3 Properties of the Wigner-function matrix

In the following we will briefly discuss some properties
of Wij(α). First of all from equation (7) it can be seen
that the Wigner-function matrix is Hermitian, that is
Wij(α)=W ∗ji(α). Moreover, the diagonal elements Wii(α)
represent the Wigner functions of the motional two-mode
quantum states of the atom on condition that the elec-
tronic quantum state is in |i〉, whereas the off-diagonal ele-
ments Wij(α) (i 6=j) give information on the electronic co-
herence and the possible entanglement between motional
and electronic degrees of freedom. Note that the elements
of the Wigner-function matrix Wij(α) are normalised to
the corresponding elements of the reduced density matrix
σij of the electronic subsystem∫ ∫

d2α1 d2α2Wij(α) = Tr %̂ij = σij . (11)

In a similar way, taking the trace of the Wigner-function
matrix over the electronic degree of freedom, one obtains
the Wigner function corresponding to the reduced (two-
mode) motional subsystem

W (α) =
∑
i

Wii(α). (12)

Finally, if there exists no entanglement between the in-
volved motional and electronic degrees of freedom of the
trapped atom, the density operator of the system can be
written as a direct product,

%̂ = σ̂ ⊗ ρ̂1 ⊗ ρ̂2, (13)

where σ̂ is the electronic density operator, and ρ̂1 and ρ̂2

are the density operators describing the motional quan-
tum states of the modes in the x1 and x2 directions, re-
spectively. In this case the corresponding Wigner-function
matrix can be factorised to the form

Wij(α) = σijW1(α1)W2(α2), (14)
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Fig. 1. (a) Three-level electronic system of the trapped atom for the measurement of the Wigner-function matrix. The weak
electronic transition |1〉 ↔ |2〉 is driven by two Raman-laser configurations (L1, L

′
1 and L2, L

′
2) and its inversion is tested by

probing the strong transition |1〉 ↔ |3〉 for resonance fluorescence. (b) The geometric setup of the four Raman-laser beams.

where Wi(αi) are the Wigner functions corresponding to
the density operators ρ̂i, showing the complete indepen-
dence between the different degrees of freedom of the
atom.

3 Determination of the Wigner-function
matrix from measured data

In this section we will present two different schemes for
the reconstruction of the Wigner-function matrix from
measurements of the electronic state of the atom. While
the first method relies on a QND-type measurement of
the vibrational populations by a sequence of laser interac-
tions intermitted by probing for fluorescence, the second
method is largely simplified in that it gives one directly
the value of Wigner-function matrix as a measurable joint
probability of two no-fluorescence events. To proceed, let
us first discuss the laser interaction that is needed for both
types of methods.

3.1 Raman laser interaction

For measuring the Wigner-function matrix Wij(α) we
make use of a three-level electronic system as shown in
Figure 1. The electronic transition of interest that min-
gles the motional degrees of freedom is the weak transition
|1〉↔|2〉. This transition is simultaneously driven on res-
onance by two Raman-laser configurations with different
detunings as shown in Figure 1(a). The Raman-laser fields
are chosen to have wave vector differences which point into
the x1 (lasers L1, L′1) and the x2 (lasers L2, L′2) directions,
respectively, as depicted in Figure 1(b). The electronic dy-
namics of the weak transition |1〉↔|2〉 is monitored with

very high quantum efficiency by probing the strong tran-
sition |1〉 ↔ |3〉 for the appearance of resonance fluores-
cence [27]. That is, after a well-controlled interaction time
of both Raman-laser configurations with the weak elec-
tronic transition, a laser pulse is applied on the strong
transition. The appearance of fluorescence projects the
atom into the electronic ground state |1〉 whereas the ab-
sence of fluorescence projects it into the excited electronic
state |2〉.

For the weak transition being driven in the resolved-
sideband limit and for different detunings of the two Ra-
man laser pairs in x1 and x2 directions, we can generalise
the results of [19] to two independently driven motional
modes and obtain the interaction Hamiltonian (in vibra-
tional rotating-wave approximation) as

Ĥint =
1

2
~

[
Ω1f̂0(n̂1; η1) +Ω2f̂0(n̂2; η2)

]
Â21 + h.c. (15)

Here Ωi (i = 1, 2) are the effective two-photon Rabi fre-
quencies of the Raman laser pairs (Li, L

′
i) driving the

weak electronic transition and ηi are the Lamb-Dicke pa-
rameters characterising the spread of the atomic center-of-
mass ground-state wave function with respect to the laser
wavelengths of the beat notes of the Raman laser pairs in
xi directions.

The operator-valued function f̂0(n̂; η) in equation (15)
describes the nonlinearities in the vibronic coupling
emerging from the interferences of the atomic center-of-
mass wave function with the Raman laser pairs. It is given
in its normally ordered form by

f̂0(â†â; η) = e−η
2/2

∞∑
k=0

(−1)k
η2k

(k!)2
â†kâk

= : J0

(
2η
√
â†â
)
e−η

2/2 :, (16)
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where : : denotes normal ordering. In the following we
choose the laser-beam geometry and the laser intensities
such that the Lamb-Dicke parameters and the Rabi fre-
quencies are equal for both Raman configurations, i.e.
η1 = η2 = η and |Ω1| = |Ω2| = |Ω| [28]. Accordingly, the
interaction Hamiltonian reduces to

Ĥint =
1

2
~Ω
[
f̂0(n̂1; η) eiϕ + f̂0(n̂2; η) e−iϕ

]
Â21 + h.c. ,

(17)

where ϕ = 1
2 [arg(Ω1)− arg(Ω2)] is the phase difference

of the two Raman-laser configurations which is chosen
to be ϕ = 0 [29]. The phase of the Rabi frequency,
Ω= |Ω| exp(iφ), is given by

φ =
1

2
[arg(Ω1) + arg(Ω2)] , (18)

and can be held very stable. Note, that the interaction
Hamiltonian (17) fulfils the condition [n̂i, Ĥint] = 0 (i =
1, 2), so that the motional energy of the trapped atom is
not changed by the laser interaction.

The time evolution of the density operator %̂ can be
given in the interaction picture as

%̂(τ) = Û(τ−τ ′) %̂(τ ′) Û†(τ−τ ′). (19)

For notational simplicity we use here and in the following
the dimensionless time

τ = |Ω|t, (20)

which is scaled in units of electronic (Raman) Rabi cycles.

The unitary time-evolution operator Û(τ) resulting from
equation (17) is diagonal in the number-state representa-
tion with the diagonal elements given by

〈m,n| Û(τ) |m,n〉 = cos (Ωmnτ)

−i sin (Ωmnτ)
(
Â21 e

iφ + Â12 e
−iφ
)
. (21)

The coefficients Ωmn describe the two-dimensional, non-
linear vibronic coupling which is due to interference ef-
fects between the Raman laser fields and the center-of-
mass wave function of the trapped atom. They are known
as the scaled, dimensionless Rabi frequencies of the two-
mode vibronic interaction that can be explicitly expressed
as

Ωmn =
1

2
〈m,n|

[
f̂0(n̂1; η) + f̂0(n̂2; η)

]
|m,n〉

=
1

2

[
Lm(η2) + Ln(η2)

]
e−η

2/2, (22)

where Ln(x) are the Laguerre polynomials. The behaviour
of Ωmn is shown in Figure 2.

The dynamics of the electronic transition |1〉 ↔ |2〉
under the action of the Hamiltonian (17), as described
by equation (21), allows one to determine the Wigner-
function matrix Wij(α) in two different ways. The first
one consists in a QND-based measurement of each of the
quantities 〈m,n|%̂ij(−α)|m,n〉 separately and the subse-
quent use of equation (8). The second one allows a direct
measurement of Wij(α) from joint probabilities.
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Fig. 2. Scaled Rabi frequencies Ωmn plotted over m and n for
η=0.25. One clearly observes the zeros and the change of sign
of the Rabi frequencies at m,n≈20.

3.2 Quantum nondemolition measurement method

Let us start with the QND-based method and suppose
that before the ion interacts with the laser fields, the vi-
brations in x1 and x2 are coherently displaced by −α1 and
−α2, respectively. This initial coherent displacement can
be realized by applying radio-frequency fields to the ion,
as has been demonstrated in the experimental determina-
tion of the quantum state of the motional subsystem [17].
If, after an interaction time τ1 with the Raman laser fields,
the atom is found in the excited electronic state |2〉, that
is, no fluorescence has been observed during the excitation
of the strong transition |1〉↔ |3〉, the unnormalised den-
sity operator which is conditioned on this no-fluorescence
events is given by

%̂(τ1) = |2〉〈2| ⊗ %̂22(τ1), (23)

where the diagonal elements of the conditioned motional
density operator %̂22(τ1) are determined by the unitary
time evolution (21) as

〈m,n|%̂22(τ1;φ)|m,n〉 =

cos2 (Ωmnτ1) 〈m,n|%̂22(−α)|m,n〉

+ sin2 (Ωmnτ1) 〈m,n|%̂11(−α)|m,n〉

+ sin (2Ωmnτ1) Im
[
〈m,n|%̂12(−α)|m,n〉 eiφ

]
. (24)

Here the phase φ is a parameter yet to be determined.

Consider now k of such interaction-probe cycles with
interaction times τ1, . . . , τk, each one accompanied by the
absence of fluorescence. In this case the resulting condi-
tioned motional number statistics after a sequence of k
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cycles is given by

〈m,n|%̂22({τl};φ)|m,n〉 =
k∏
q=2

cos2 (Ωmnτq) 〈m,n|%̂22(τ1;φ)|m,n〉, (25)

where {τl} denotes the set of k interaction times {τl}=
{τk, . . . , τ1}. The joint probability P ({τl};φ) to obtain
such a sequence of no-fluorescence events is then simply
the trace of %̂22({τl};φ),

P ({τl};φ) =
∞∑

m,n=0

〈m,n|%̂22({τl};φ)|m,n〉. (26)

Our aim is to map the elements 〈m0, n0|%̂ij(−α)|m0, n0〉
onto the quantities P ({τl};φ), which can be experimen-
tally determined by the fraction of positive events in
a large number of trials to obtain the above sequence
of interaction-probe cycles. The first step consists in
mapping pairs of elements with identical total numbers
of quanta N=m0+n0,

〈m0, n0|%̂22(τ1;φ)|m0, n0〉+ 〈n0,m0|%̂22(τ1;φ)|n0,m0〉,

onto P ({τl};φ) by choosing the interaction times τ2, . . . , τk
to be

τ2, . . . , τk =
π

|Ωm0n0 |
p (p = 1, 2, . . . ), (27)

where p can be different for each Raman-laser interaction.
From equations (25) and (26) and the relation Ωmn=Ωnm
it can be seen that, after a sufficiently large number of
interaction-probe cycles, k≥kmin, P ({τl};φ) will converge
to

P ({τl};φ) = 〈m0, n0|%̂22(τ1;φ)|m0, n0〉

+ 〈n0,m0|%̂22(τ1;φ)|n0,m0〉. (28)

The first interaction time τ1 and the phase φ can now
be used to map the quantities 〈m0, n0|%̂ij(−α)|m0, n0〉
onto 〈m0, n0|%̂22(τ1;φ)|m0, n0〉 via equation (24). This is
done by choosing three different interaction times, τ1 =
T22, T11, T12, given by

T22 = 0, T11 =
π

|Ωm0n0 |
, T12 =

π

2|Ωm0n0 |
. (29)

Then for τ1 = Tij we obtain a mapping onto the ma-
trix element 〈m0, n0|%̂ij(−α)|m0, n0〉. For τ1 = T12 we
additionally need two different laser phases φ = π/2
and φ = 0 to obtain the real and imaginary part of
〈m0, n0|%̂12(−α)|m0, n0〉, respectively.

With this procedure one can obtain step by step the
sum of elements given in equation (28) and one is able to
reconstruct the Wigner-function matrix Wij(α) by sum-
ming up the measured data according to equation (8).
In the following we will concentrate on the measurement
method which allows one to directly obtain the Wigner-
function matrix as a joint probability for only two appro-
priately chosen Raman interaction times.

3.3 Direct measurement method

From equations (25) and (26) the joint probability for ob-
serving no-fluorescence events after only two Raman in-
teractions with interaction times τ1 and τ2 results as

P ({τ2, τ1};φ) =
∞∑

m,n=0

cos2 (Ωmnτ2) 〈m,n|%̂22(τ1;φ)|m,n〉

=
1

2
+

1

2

∞∑
m,n=0

cos (2Ωmnτ2) 〈m,n|%̂22(τ1;φ)|m,n〉. (30)

Let us now consider the coefficients Ωmn in more detail.
From equation (22) we observe that the dependence on the
motional quantum number n is determined by Laguerre
polynomials Ln(η2). For small motional excitations the
Laguerre polynomial may be expanded with respect to n,

Ln(η2) = 1− η2n+O(η4) . (31)

Inserting the expansion (31) into equation (22), the Rabi
frequencies Ωmn are approximated to be

Ωmn ≈

[
1−

η2

2
(m+n)

]
e−η

2/2. (32)

To separate the motional part (cm) we choose the second
interaction time to be τ2 =τcm with

τcm =
π

η2
eη

2/2. (33)

Using the linear expansion (32) the occurring cosine in
equation (30) reads

cos (2Ωmnτ2) ≈ cos

[
2π

η2
eη

2/2 − π(m+n)

]
= C(η) (−1)m+n, (34)

with the constant C(η) given by

C(η) = cos

(
2π

η2
eη

2/2

)
. (35)

The joint probability for observing two subsequent no-
fluorescence events (30) then simplifies to

P ({τ2 =τcm, τ1};φ) =

1

2
+
C(η)

2

∞∑
m,n=0

(−1)m+n〈m,n|%̂22(τ1;φ)|m,n〉. (36)

We consider a Raman-laser configuration for the first
interaction (interaction time τ1) where the Lamb-Dicke
parameter is very small so that we may operate in the
Lamb-Dicke regime, affecting only the electronic popula-
tions but not the motional quantum state. This may be re-
alized by applying two co-propagating Raman-laser beams
to result in a minimal Lamb-Dicke parameter that is solely
determined by the ratio of the vibrational frequencies to
the frequency of the electronic transition |1〉↔|2〉. For this
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case the relevant matrix elements of the density operator
after the interaction time τ1 read

〈m,n|%̂22(τ1;φ)|m,n〉 =

cos2
(τ1

2

)
〈m,n|%̂22(−α)|m,n〉

+ sin2
(τ1

2

)
〈m,n|%̂11(−α)|m,n〉

+ sin (τ1) Im
[
〈m,n|%̂12(−α)|m,n〉eiφ

]
. (37)

As in the QND-based method we may now choose three
different interaction times

T22 = 0, T11 = π, T12 =
π

2
, (38)

such that τ1 = T22, T11, and T12 maps the matrix el-
ements of the excited state, the ground state, and the
electronic coherences onto 〈m,n|%̂22(τ1;φ)|m,n〉, respec-
tively. For the choice τ1 = T12 one again has to use two
laser phases φ= π/2, 0 to obtain the real and imaginary
parts of the matrix elements of the electronic coherences.
The relation between the joint probability (36) and the
Wigner-function matrix elements finally reads

P ({τ2 =τcm, τ1};φ) = (39)

1

2
+
C(η)

2


W11(α), τ1 =T11,

W22(α), τ1 =T22,

ReW12(α), τ1 =T12, φ= π
2 ,

ImW12(α), τ1 =T12, φ=0.

It is seen that the Wij(α) is directly related to a measur-
able quantity, whereas in the QND method the Wigner-
function matrix is obtained from a weighted sum over the
measurable data.

4 Limitations of the reconstruction methods

Obviously, for both reconstruction methods there are lim-
itations for their applicability which are due to the ex-
perimental parameters. Here especially the Lamb-Dicke
parameter needed for the resonant vibronic laser interac-
tion is of particular importance for the accuracy of recon-
structed vibronic quantum states.

4.1 Limitations of the QND-based method

Let us first consider the limits of the applicability of
the QND-based reconstruction method described in Sec-
tion 3.2. This method relies on the ability to discriminate
the number states |m,n〉 by the absolute values of their
different (scaled) Rabi frequencies |Ωmn|. However, the
Rabi frequencies Ωmn given by the sum of two Laguerre
polynomials (22) are in general not unique, so that for a
given Lamb-Dicke parameter η, there may exist two dif-
ferent number states |m,n〉 and |m′, n′〉 (m′ 6=n, n′ 6=m)
for which Ωmn = ±Ωm′n′ . In other words, with increas-
ing values of m,n the scaled two-mode Rabi frequencies

Fig. 3. Schematic determination of the maximum recon-
structable quantum state for a single motional degree of free-
dom in phase space. The shaded areas represent the initial
quantum state and the displaced state (D̂(α), displacement
amplitude α). The maximum phase-space extension of the ini-
tial quantum state |αmax| determines the maximum amplitude
of the displaced state for displacements α where the Wigner
function W (α) is nonvanishing.

Ωmn would decrease to zero and exhibit a change of sign
at some value m,n ≈ nmax, leading to almost degener-
ate absolute values of the Rabi frequencies for the class of
number states lower (m,n<nmax) and the class of number
states higher (m,n>nmax) than the number nmax where
the Rabi frequency vanishes. Therefore, to obtain a unique
mapping of the absolute values of the Rabi frequencies
|Ωmn| onto the number states |m,n〉, the displaced num-
ber statistics has to be located below the excitation num-
bers m,n, where the Rabi frequencies Ωmn vanish, that is
m,n<nmax. For example, in Figure 2 the “zeros” of the
two-mode Rabi frequencies Ωmn where the reconstruction
will fail are clearly seen.

More quantitatively, the dependence of the maximum
quantum number nmax on the Lamb-Dicke parameter, be-
ing determined by the first zero of the Laguerre polyno-
mial (cf. Eq. (22)), can be approximately given by [30]

nmax ≈
9π2

64η2
, (40)

so that for increasing Lamb-Dicke parameter the upper
limit nmax decreases and the range of reconstructable
quantum states becomes smaller.

Let us consider the vibrational quantum state whose
Wigner function has in phase space some maximum ex-
tension |αmax|, see Figure 3. To reconstruct the com-
plete phase-space distribution one therefore has to dis-
place the initial state up to amplitudes of |αmax|. There-
fore, the maximum absolute value of the amplitude of
some phase-space components can be |αmax| after the dis-
placement, corresponding approximately to the number
statistics with a tail at |αmax|2. To obtain a good recon-
struction of the Wigner function we have to request the
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following relation

|αmax|
2 ≈ nmax, (41)

where nmax is the maximum allowed number of vibrational
quanta given by equation (40). Equation (41) gives a rela-
tion for the dependence of the maximum extension of the
Wigner function on the Lamb-Dicke parameter

rmax =
3π

8η
≈

1.2

η
. (42)

For the Lamb-Dicke parameter being η = 0.1, for exam-
ple, the maximum extension in phase space is given by
|αmax|≈12.

4.2 Limitations of the direct method

There also exist practical limits of the applicability for the
direct measurement method. Since this method is based on
a linear expansion of the vibronic two-mode Rabi frequen-
cies in the vibrational quantum numbers, any higher-order
term in the expansion of (22) has to be small compared
with the linear term, that is for the expansion up to second
order

Ln(η2) ≈ 1− η2n

[
1−

1

4
η2(n− 1)

]
+O(η6), (43)

the second term in the bracket should be much smaller
than the first one, i.e.

1

4
η2nmax � 1. (44)

If we require the contribution of the quadratic term to
the Rabi frequency to be a fraction p (0≤ p≤ 1) of that
of the desired linear term, we obtain a relation for the
maximum vibrational quantum number of the displaced
number statistics,

nmax ≈
4

η2
p. (45)

Compared with the limit for the QND-based method (40)
this limit is more restrictive for reasonable values of the
fraction p of the quadratic error. To reach the same range
of applicability with the direct method as with the QND-
based method, by equating (40) and (45), we get a value
for the emerging fraction of quadratic errors in the direct
method,

p =
9π2

256
≈ 0.35. (46)

That is, to obtain the same maximally reconstructable
extension of the phase-space distribution one has to take
into account a quadratic error in the Rabi frequencies of
the order of 35%. Depending on the quantum state under
study, these quadratic errors in the Rabi frequencies will
decrease the quality of the reconstructed Wigner function.

We have now seen that the limitations of the range of
reconstructable quantum states can be roughly given by
a maximum phase-space extent |αmax| which in general
is larger for the QND-based reconstruction method. How-
ever, the direct method has the advantage of a reduced
experimental effort, since only two laser pulses have to be
applied for directly measuring the Wigner-function ma-
trix as no-fluorescence joint probabilities, whereas for the
QND-based method one usually needs several pulses to
project the required displaced number statistics onto the
measured signal.

5 Summary and conclusions

In conclusion we have proposed two related methods for
determining the complete (possibly entangled) two-mode
vibronic quantum state of a trapped atom. For the full
characterisation of the electronic and motional degrees
of freedom we use a Wigner-function matrix which com-
bines the features of the two-mode motional Wigner func-
tion with those of the electronic density matrix. For the
reconstruction from experimental data we have studied
two schemes, that both rely on resonantly driving a weak
electronic transition with two Raman-laser configurations
and subsequently probing the electronic inversion with
the help of laser-induced fluorescence on an auxiliary,
strong electronic transition. The first method is based on
the quantum nondemolition measurement of the motional
statistics of the trapped atom: One has to project out the
desired statistics by repeated application of interaction-
probe cycles and sum it up to obtain the Wigner-function
matrix elements at a phase-space point determined by the
initial coherent displacement. In contrast to the QND-
based method the direct method is largely simplified: It
requires only two interaction-probe cycles, reducing the
experimental efforts, and the Wigner-function matrix el-
ements at the predefined phase-space points are directly
measured as no-fluorescence joint probabilities. This ad-
vantage is accompanied by the restricted applicability of
the direct method compared to the QND-based scheme,
which is due to the nonlinear behaviour of the laser-
induced vibronic coupling.
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